Complexity of gradient descent for multiobjective optimization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutiple-gradient Descent Algorithm for Multiobjective Optimization

The steepest-descent method is a well-known and effective single-objective descent algorithm when the gradient of the objective function is known. Here, we propose a particular generalization of this method to multi-objective optimization by considering the concurrent minimization of n smooth criteria {J i } (i = 1,. .. , n). The novel algorithm is based on the following observation: consider a...

متن کامل

Multiobjective Optimization Strategies for Linear Gradient Chromatography

The increase in the scale of preparative chromatographic processes for biopharmaceutical applications now necessitates the development of effective optimization strategies for large-scale processes in a manufacturing setting. The current state of the art for optimization of preparative chromatography has been limited to single objective functions. Further, there is a lack of understanding of wh...

متن کامل

Understanding Complexity in Multiobjective Optimization

This report documents the program and outcomes of the Dagstuhl Seminar 15031 Understanding Complexity in Multiobjective Optimization. This seminar carried on the series of four previous Dagstuhl Seminars (04461, 06501, 09041 and 12041) that were focused on Multiobjective Optimization, and strengthening the links between the Evolutionary Multiobjective Optimization (EMO) and Multiple Criteria De...

متن کامل

An overview of gradient descent optimization algorithms

Gradient descent optimization algorithms, while increasingly popular, are often used as black-box optimizers, as practical explanations of their strengths and weaknesses are hard to come by. This article aims to provide the reader with intuitions with regard to the behaviour of different algorithms that will allow her to put them to use. In the course of this overview, we look at different vari...

متن کامل

Iteration Complexity of Feasible Descent Methods Iteration Complexity of Feasible Descent Methods for Convex Optimization

In many machine learning problems such as the dual form of SVM, the objective function to be minimized is convex but not strongly convex. This fact causes difficulties in obtaining the complexity of some commonly used optimization algorithms. In this paper, we proved the global linear convergence on a wide range of algorithms when they are applied to some non-strongly convex problems. In partic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Optimization Methods and Software

سال: 2018

ISSN: 1055-6788,1029-4937

DOI: 10.1080/10556788.2018.1510928